Skip to main content

University of Greenwich - Shop


From Genes to Genomes: Concepts and Applications of DNA Technology 3rd edition

Paperback by Dale, Jeremy W. (University of Surrey, UK); von Schantz, Malcolm (University of Surrey, UK); Plant, Nicholas (University of Surrey, UK)

From Genes to Genomes: Concepts and Applications of DNA Technology

£42.95

ISBN:
9780470683859
Publication Date:
9 Dec 2011
Edition/language:
3rd edition / English
Publisher:
John Wiley & Sons Inc
Pages:
400 pages
Format:
Paperback
For delivery:
Estimated despatch 29 - 31 Jan 2025
From Genes to Genomes: Concepts and Applications of DNA Technology

Description

The latest edition of this highly successful textbook introduces the key techniques and concepts involved in cloning genes and in studying their expression and variation. The new edition features: Increased coverage of whole-genome sequencing technologies and enhanced treatment of bioinformatics. Clear, two-colour diagrams throughout. A dedicated website including all figures. Noted for its outstanding balance between clarity of coverage and level of detail, this book provides an excellent introduction to the fast moving world of molecular genetics.

Contents

Preface xiii 1 From Genes to Genomes 1 1.1 Introduction 1 1.2 Basic molecular biology 4 1.2.1 The DNA backbone 4 1.2.2 The base pairs 6 1.2.3 RNA structure 10 1.2.4 Nucleic acid synthesis 11 1.2.5 Coiling and supercoilin 11 1.3 What is a gene? 13 1.4 Information flow: gene expression 15 1.4.1 Transcription 16 1.4.2 Translation 19 1.5 Gene structure and organisation 20 1.5.1 Operons 20 1.5.2 Exons and introns 21 1.6 Refinements of the model 22 2 How to Clone a Gene 25 2.1 What is cloning? 25 2.2 Overview of the procedures 26 2.3 Extraction and purification of nucleic acids 29 2.3.1 Breaking up cells and tissues 29 2.3.2 Alkaline denaturation 31 2.3.3 Column purification 31 2.4 Detection and quantitation of nucleic acids 32 2.5 Gel electrophoresis 33 2.5.1 Analytical gel electrophoresis 33 2.5.2 Preparative gel electrophoresis 36 2.6 Restriction endonucleases 36 2.6.1 Specificity 37 2.6.2 Sticky and blunt ends 40 2.7 Ligation 42 2.7.1 Optimising ligation conditions 44 2.7.2 Preventing unwanted ligation: alkaline phosphatase and double digests 46 2.7.3 Other ways of joining DNA fragments 48 2.8 Modification of restriction fragment ends 49 2.8.1 Linkers and adaptors 50 2.8.2 Homopolymer tailing 52 2.9 Plasmid vectors 53 2.9.1 Plasmid replication 54 2.9.2 Cloning sites 55 2.9.3 Selectable markers 57 2.9.4 Insertional inactivation 58 2.9.5 Transformation 59 2.10 Vectors based on the lambda bacteriophage 61 2.10.1 Lambda biology 61 2.10.2 In vitro packaging 65 2.10.3 Insertion vectors 66 2.10.4 Replacement vectors 68 2.11 Cosmids 71 2.12 Supervectors: YACs and BACs 72 2.13 Summary 73 3 Genomic and cDNA Libraries 75 3.1 Genomic libraries 77 3.1.1 Partial digests 77 3.1.2 Choice of vectors 80 3.1.3 Construction and evaluation of a genomic library 83 3.2 Growing and storing libraries 86 3.3 cDNA libraries 87 3.3.1 Isolation of mRNA 88 3.3.2 cDNA synthesis 89 3.3.3 Bacterial cDNA 93 3.4 Screening libraries with gene probes 94 3.4.1 Hybridization 94 3.4.2 Labelling probes 98 3.4.3 Steps in a hybridization experiment 99 3.4.4 Screening procedure 100 3.4.5 Probe selection and generation 101 3.5 Screening expression libraries with antibodies 103 3.6 Characterization of plasmid clones 106 3.6.1 Southern blots 107 3.6.2 PCR and sequence analysis 108 4 Polymerase Chain Reaction (PCR) 109 4.1 The PCR reaction 110 4.2 PCR in practice 114 4.2.1 Optimisation of the PCR reaction 114 4.2.2 Primer design 115 4.2.3 Analysis of PCR products 117 4.2.4 Contamination 118 4.3 Cloning PCR products 119 4.4 Long-range PCR 121 4.5 Reverse-transcription PCR 123 4.6 Quantitative and real-time PCR 123 4.6.1 SYBR Green 123 4.6.2 TaqMan 125 4.6.3 Molecular beacons 125 4.7 Applications of PCR 127 4.7.1 Probes and other modified products 127 4.7.2 PCR cloning strategies 128 4.7.3 Analysis of recombinant clones and rare events 129 4.7.4 Diagnostic applications 130 5 Sequencing a Cloned Gene 131 5.1 DNA sequencing 131 5.1.1 Principles of DNA sequencing 131 5.1.2 Automated sequencing 136 5.1.3 Extending the sequence 137 5.1.4 Shotgun sequencing; contig assembly 138 5.2 Databank entries and annotation 140 5.3 Sequence analysis 146 5.3.1 Identification of coding region 146 5.3.2 Expression signals 147 5.4 Sequence comparisons 148 5.4.1 DNA sequences 148 5.4.2 Protein sequence comparisons 151 5.4.3 Sequence alignments: Clustal 157 5.5 Protein structure 160 5.5.1 Structure predictions 160 5.5.2 Protein motifs and domains 162 5.6 Confirming gene function 165 5.6.1 Allelic replacement and gene knockouts 166 5.6.2 Complementation 168 6 Analysis of Gene Expression 169 6.1 Analysing transcription 169 6.1.1 Northern blots 170 6.1.2 Reverse transcription-PCR 171 6.1.3 In situ hybridization 174 6.2 Methods for studying the promoter 174 6.2.1 Locating the promoter 175 6.2.2 Reporter genes 177 6.3 Regulatory elements and DNA-binding proteins 179 6.3.1 Yeast one-hybrid assays 179 6.3.2 DNase I footprinting 181 6.3.3 Gel retardation assays 181 6.3.4 Chromatin immunoprecipitation (ChIP) 183 6.4 Translational analysis 185 6.4.1 Western blots 185 6.4.2 Immunocytochemistry and immunohistochemistry 187 7 Products from Native and Manipulated Cloned Genes 189 7.1 Factors affecting expression of cloned genes 190 7.1.1 Transcription 190 7.1.2 Translation initiation 192 7.1.3 Codon usage 193 7.1.4 Nature of the protein product 194 7.2 Expression of cloned genes in bacteria 195 7.2.1 Transcriptional fusions 195 7.2.2 Stability: conditional expression 198 7.2.3 Expression of lethal genes 201 7.2.4 Translational fusions 201 7.3 Yeast systems 204 7.3.1 Cloning vectors for yeasts 204 7.3.2 Yeast expression systems 206 7.4 Expression in insect cells: baculovirus systems 208 7.5 Mammalian cells 209 7.5.1 Cloning vectors for mammalian cells 210 7.5.2 Expression in mammalian cells 213 7.6 Adding tags and signals 215 7.6.1 Tagged proteins 215 7.6.2 Secretion signals 217 7.7 In vitro mutagenesis 218 7.7.1 Site-directed mutagenesis 218 7.7.2 Synthetic genes 223 7.7.3 Assembly PCR 223 7.7.4 Synthetic genomes 224 7.7.5 Protein engineering 224 7.8 Vaccines 225 7.8.1 Subunit vaccines 225 7.8.2 DNA vaccines 226 8 Genomic Analysis 229 8.1 Overview of genome sequencing 229 8.1.1 Strategies 230 8.2 Next generation sequencing (NGS) 231 8.2.1 Pyrosequencing (454) 232 8.2.2 SOLiD sequencing (Applied Biosystems) 235 8.2.3 Bridge amplification sequencing (Solexa/Ilumina) 237 8.2.4 Other technologies 239 8.3 De novo sequence assembly 239 8.3.1 Repetitive elements and gaps 240 8.4 Analysis and annotation 242 8.4.1 Identification of ORFs 243 8.4.2 Identification of the function of genes and their products 250 8.4.3 Other features of nucleic acid sequences 251 8.5 Comparing genomes 256 8.5.1 BLAST 256 8.5.2 Synteny 257 8.6 Genome browsers 258 8.7 Relating genes and functions: genetic and physical maps 260 8.7.1 Linkage analysis 261 8.7.2 Ordered libraries and chromosome walking 262 8.8 Transposon mutagenesis and other screening techniques 263 8.8.1 Transposition in bacteria 263 8.8.2 Transposition in Drosophila 266 8.8.3 Transposition in other organisms 268 8.8.4 Signature-tagged mutagenesis 269 8.9 Gene knockouts, gene knockdowns and gene silencing 271 8.10 Metagenomics 273 8.11 Conclusion 274 9 Analysis of Genetic Variation 275 9.1 Single nucleotide polymorphisms 276 9.1.1 Direct sequencing 278 9.1.2 SNP arrays 279 9.2 Larger scale variations 280 9.2.1 Microarrays and indels 281 9.3 Other methods for studying variation 282 9.3.1 Genomic Southern blot analysis: restriction fragment length polymorphisms (RFLPs) 282 9.3.2 VNTR and microsatellites 285 9.3.3 Pulsed-field gel electrophoresis 287 9.4 Human genetic variation: relating phenotype to genotype 289 9.4.1 Linkage analysis 289 9.4.2 Genome-wide association studies (GWAS) 292 9.4.3 Database resources 294 9.4.4 Genetic diagnosis 294 9.5 Molecular phylogeny 295 9.5.1 Methods for constructing trees 298 10 Post-Genomic Analysis 305 10.1 Analysing transcription: transcriptomes 305 10.1.1 Differential screening 306 10.1.2 Other methods: transposons and reporters 308 10.2 Array-based methods 308 10.2.1 Expressed sequence tag (EST) arrays 309 10.2.2 PCR product arrays 310 10.2.3 Synthetic oligonucleotide arrays 312 10.2.4 Important factors in array hybridization 313 10.3 Transcriptome sequencing 315 10.4 Translational analysis: proteomics 316 10.4.1 Two-dimensional electrophoresis 317 10.4.2 Mass spectrometry 318 10.5 Post-translational analysis: protein interactions 320 10.5.1 Two-hybrid screening 320 10.5.2 Phage display libraries 321 10.6 Epigenetics 323 10.7 Integrative studies: systems biology 324 10.7.1 Metabolomic analysis 324 10.7.2 Pathway analysis and systems biology 325 11 Modifying Organisms: Transgenics 327 11.1 Transgenesis and cloning 327 11.1.1 Common species used for transgenesis 328 11.1.2 Control of transgene expression 330 11.2 Animal transgenesis 333 11.2.1 Basic methods 333 11.2.2 Direct injection 333 11.2.3 Retroviral vectors 335 11.2.4 Embryonic stem cell technology 336 11.2.5 Gene knockouts 339 11.2.6 Gene knock-down technology: RNA interference 340 11.2.7 Gene knock-in technology 341 11.3 Applications of transgenic animals 342 11.4 Disease prevention and treatment 343 11.4.1 Live vaccine production: modification of bacteria and viruses 343 11.4.2 Gene therapy 346 11.4.3 Viral vectors for gene therapy 347 11.5 Transgenic plants and their applications 349 11.5.1 Introducing foreign genes 349 11.5.2 Gene subtraction 351 11.5.3 Applications 352 11.6 Transgenics: a coda 353 Glossary 355 Bibliography 375 Index 379

Back

University of Greenwich